Skip to contents

Get statistics (p-values) on your gene set's motifbreakR results compared to the bootstrapped empirical null distribution.

Usage

mb_bootstats(mbsmry, mbboot)

Arguments

mbsmry

Results from running mb_summarize on motifbreakR results from your gene set of interest.

mbboot

Results from running mb_bootstrap on a full background of all genes. Typically this should be performed once, with results read in from a file.

Value

A tibble with each metric from your bootstrap resampling (see mb_summarize), and p-value comparing the actual value of your gene set (stat) against the empirical null distribution (bootdist).

Examples

data(vignettedata)
mbres <- vignettedata$mbres
mball <- vignettedata$mball
mbsmry <- mb_summarize(mbres)
mbsmry
#> # A tibble: 1 × 7
#>   ngenes nsnps nstrong alleleDiffAbsMean alleleDiffAbsSum alleleEffectSizeAbsM…¹
#>    <int> <int>   <int>             <dbl>            <dbl>                  <dbl>
#> 1      5  1335     950             0.798            1066.                  0.155
#> # ℹ abbreviated name: ¹​alleleEffectSizeAbsMean
#> # ℹ 1 more variable: alleleEffectSizeAbsSum <dbl>
set.seed(42)
mbboot <- mb_bootstrap(mball, ngenes=5, boots = 100)
mbboot
#> $bootwide
#> # A tibble: 100 × 9
#>     boot genes           ngenes nsnps nstrong alleleDiffAbsMean alleleDiffAbsSum
#>    <int> <chr>            <int> <int>   <int>             <dbl>            <dbl>
#>  1     1 431304;426469;…      5  1062     750             0.797             847.
#>  2     2 426183;395959;…      5  1244     914             0.808            1005.
#>  3     3 102465361;4261…      5   886     655             0.812             720.
#>  4     4 396007;407779;…      5  1514    1139             0.815            1234.
#>  5     5 426883;396544;…      5   925     623             0.787             728.
#>  6     6 425059;429035;…      5  1350    1026             0.821            1109.
#>  7     7 408042;426880;…      5   823     627             0.823             677.
#>  8     8 396170;425058;…      5  1262     910             0.805            1016.
#>  9     9 102466833;4261…      5  1263     963             0.822            1038.
#> 10    10 429035;408042;…      5  1289     987             0.823            1061.
#> # ℹ 90 more rows
#> # ℹ 2 more variables: alleleEffectSizeAbsMean <dbl>,
#> #   alleleEffectSizeAbsSum <dbl>
#> 
#> $bootdist
#> # A tibble: 6 × 2
#>   metric                  bootdist   
#>   <chr>                   <list>     
#> 1 alleleDiffAbsMean       <dbl [100]>
#> 2 alleleDiffAbsSum        <dbl [100]>
#> 3 alleleEffectSizeAbsMean <dbl [100]>
#> 4 alleleEffectSizeAbsSum  <dbl [100]>
#> 5 nsnps                   <dbl [100]>
#> 6 nstrong                 <dbl [100]>
#> 
mb_bootstats(mbsmry, mbboot)
#> # A tibble: 6 × 5
#>   metric                      stat bootdist     bootmax     p
#>   <chr>                      <dbl> <list>         <dbl> <dbl>
#> 1 nsnps                   1335     <dbl [100]> 1514      0.12
#> 2 nstrong                  950     <dbl [100]> 1139      0.16
#> 3 alleleDiffAbsMean          0.798 <dbl [100]>    0.828  0.84
#> 4 alleleDiffAbsSum        1066.    <dbl [100]> 1234.     0.12
#> 5 alleleEffectSizeAbsMean    0.155 <dbl [100]>    0.163  0.47
#> 6 alleleEffectSizeAbsSum   206.    <dbl [100]>  238.     0.11